$include_dir="/home/hyper-archives/boost-commit/include"; include("$include_dir/msg-header.inc") ?>
Subject: [Boost-commit] svn:boost r80100 - sandbox/rational
From: dansearles_at_[hidden]
Date: 2012-08-20 18:55:06
Author: mrdans
Date: 2012-08-20 18:55:05 EDT (Mon, 20 Aug 2012)
New Revision: 80100
URL: http://svn.boost.org/trac/boost/changeset/80100
Log:
Initial add for rational.hpp with over/underflow checking
Added:
   sandbox/rational/rational.hpp   (contents, props changed)
Added: sandbox/rational/rational.hpp
==============================================================================
--- (empty file)
+++ sandbox/rational/rational.hpp	2012-08-20 18:55:05 EDT (Mon, 20 Aug 2012)
@@ -0,0 +1,992 @@
+//  Boost rational.hpp header file  ------------------------------------------//
+
+//  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
+//  distribute this software is granted provided this copyright notice appears
+//  in all copies. This software is provided "as is" without express or
+//  implied warranty, and with no claim as to its suitability for any purpose.
+
+// boostinspect:nolicense (don't complain about the lack of a Boost license)
+// (Paul Moore hasn't been in contact for years, so there's no way to change the
+// license.)
+
+//  See http://www.boost.org/libs/rational for documentation.
+
+//  Credits:
+//  Thanks to the boost mailing list in general for useful comments.
+//  Particular contributions included:
+//    Andrew D Jewell, for reminding me to take care to avoid overflow
+//    Ed Brey, for many comments, including picking up on some dreadful typos
+//    Stephen Silver contributed the test suite and comments on user-defined
+//    IntType
+//    Nickolay Mladenov, for the implementation of operator+=
+
+//  Revision History
+//  31 Jul 12  Added "CheckForOverflow" template parameter and support for
+//             over/underflow checking (new exception: rational_overflow)
+//             (Dan Searles)
+//  05 May 12  Reduced use of implicit gcd (Mario Lang)
+//  05 Nov 06  Change rational_cast to not depend on division between different
+//             types (Daryle Walker)
+//  04 Nov 06  Off-load GCD and LCM to Boost.Math; add some invariant checks;
+//             add std::numeric_limits<> requirement to help GCD (Daryle Walker)
+//  31 Oct 06  Recoded both operator< to use round-to-negative-infinity
+//             divisions; the rational-value version now uses continued fraction
+//             expansion to avoid overflows, for bug #798357 (Daryle Walker)
+//  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
+//  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
+//             (Joaquín M López Muñoz)
+//  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
+//  28 Sep 02  Use _left versions of operators from operators.hpp
+//  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
+//  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
+//  05 Feb 01  Update operator>> to tighten up input syntax
+//  05 Feb 01  Final tidy up of gcd code prior to the new release
+//  27 Jan 01  Recode abs() without relying on abs(IntType)
+//  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
+//             tidy up a number of areas, use newer features of operators.hpp
+//             (reduces space overhead to zero), add operator!,
+//             introduce explicit mixed-mode arithmetic operations
+//  12 Jan 01  Include fixes to handle a user-defined IntType better
+//  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
+//  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
+//  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
+//             affected (Beman Dawes)
+//   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
+//  14 Dec 99  Modifications based on comments from the boost list
+//  09 Dec 99  Initial Version (Paul Moore)
+
+#ifndef BOOST_RATIONAL_HPP
+#define BOOST_RATIONAL_HPP
+
+#include <iostream>              // for std::istream and std::ostream
+#include <ios>                   // for std::noskipws
+#include <stdexcept>             // for std::domain_error
+#include <string>                // for std::string implicit constructor
+#include <boost/operators.hpp>   // for boost::addable etc
+#include <cstdlib>               // for std::abs
+#include <boost/call_traits.hpp> // for boost::call_traits
+#include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
+#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
+#include <boost/assert.hpp>      // for BOOST_ASSERT
+#include <boost/math/common_factor_rt.hpp>  // for boost::math::gcd, lcm
+#include <limits>                // for std::numeric_limits
+#include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT
+
+namespace boost {
+
+// This is just a helper function for the overflow checking path.
+// For a given integer type (signed), multiply 2 values into separate 'high'
+// and 'low' variables of the same type.
+template <typename IntType, bool CheckForOverflow>
+void mul2Int(IntType& resHi, IntType& resLo, IntType F1, IntType F2)
+{
+    BOOST_STATIC_ASSERT(!CheckForOverflow || (CheckForOverflow && ::std::numeric_limits<IntType>::is_signed));
+    const IntType zero(0);    
+   
+    // Operate on positive values, and track sign for final result.
+    // This requires Inttype be signed.
+    bool signNeg = false;
+    if(F1<zero) {
+        F1=~F1; ++F1; signNeg = !signNeg;
+    }
+    if(F2<zero){
+        F2=~F2; ++F2; signNeg = !signNeg;
+    }
+
+    const int halfnumB = sizeof(IntType)*CHAR_BIT/2;
+    const IntType LoHalfMask = (((IntType)(1))<<halfnumB)-(IntType)(1);
+    IntType F1H = (F1>>halfnumB)&LoHalfMask, F1L = F1&LoHalfMask,
+            F2H = (F2>>halfnumB)&LoHalfMask, F2L = F2&LoHalfMask;
+
+    resLo = F1L * F2L;
+
+    IntType Acc = (resLo >> halfnumB) & LoHalfMask;
+    Acc += F1L * F2H;
+    Acc += F1H * F2L;
+
+    resLo = (resLo & LoHalfMask) + ((Acc & LoHalfMask) << halfnumB);
+    Acc = (Acc>>halfnumB) & LoHalfMask;
+    resHi = Acc + F1H * F2H;
+
+    if(signNeg)
+    {
+        resLo = ~resLo;
+        resHi = ~resHi;
+        resLo += 1;
+        if(resLo == 0)
+        {
+    	    resHi++;
+        }
+    }
+}
+
+// This is just a helper function for the overflow checking path.
+// Add two "high","low" operands to a "high","low" result.
+// Returns true if over/underflow occured ("high","low" sum cannot hold correct result).
+template <typename IntType, bool CheckForOverflow>
+bool add2Int(IntType& resHi, IntType& resLo, IntType F1H, IntType F1L, IntType F2H, IntType F2L)
+{
+    BOOST_STATIC_ASSERT(!CheckForOverflow || (CheckForOverflow && ::std::numeric_limits<IntType>::is_signed));
+    bool overflow = false;
+    const int numBits = sizeof(IntType)*CHAR_BIT;
+    const IntType MSBfMask = (IntType)(((IntType)(1)) << (numBits-1));
+    const IntType zero(0);    
+    const IntType one(1);    
+   
+    // This requires Inttype be signed.
+    if(F1L<zero)
+    {
+        if(F2L<zero)
+        {   // Both low parts are negative, 1 will always carry to high part
+            resLo = F1L+F2L;
+            resHi = F1H+F2H+one;
+        }
+        else
+        {   // F1L negative, F2L positive
+            F1L &= ~MSBfMask;
+            resLo = F1L+F2L;
+            if(resLo&MSBfMask) resHi = F1H+F2H+one;
+            else               resHi = F1H+F2H;
+            resLo += MSBfMask;
+        }
+    }
+    else
+    {
+        if(F2L<zero)
+        {   // F1L positive, F2L negative
+            F2L &= ~MSBfMask;
+            resLo = F1L+F2L;
+            if(resLo&MSBfMask) resHi = F1H+F2H+one;
+            else               resHi = F1H+F2H;
+            resLo += MSBfMask;
+        }
+        else
+        {   // Both low parts are positive, 1 will never carry to high part
+            resLo = F1L+F2L;
+            resHi = F1H+F2H;
+        }
+    }
+    if(((resHi^F1H) & ((~(F1H^F2H))) & MSBfMask))
+        overflow = true;
+    return overflow;
+}
+
+} // namespace boost
+
+// Control whether depreciated GCD and LCM functions are included (default: yes)
+#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
+#define BOOST_CONTROL_RATIONAL_HAS_GCD  1
+#endif
+
+namespace boost {
+
+#if BOOST_CONTROL_RATIONAL_HAS_GCD
+template <typename IntType>
+IntType gcd(IntType n, IntType m)
+{
+    // Defer to the version in Boost.Math
+    return math::gcd( n, m );
+}
+
+template <typename IntType>
+IntType lcm(IntType n, IntType m)
+{
+    // Defer to the version in Boost.Math
+    return math::lcm( n, m );
+}
+#endif  // BOOST_CONTROL_RATIONAL_HAS_GCD
+
+class bad_rational : public std::domain_error
+{
+public:
+    explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
+};
+
+class rational_overflow : public std::domain_error
+{
+public:
+    explicit rational_overflow() : std::domain_error("rational error: over or underflow") {}
+};
+
+template <typename IntType, bool CheckForOverflow=false>
+class rational;
+
+template <typename IntType, bool CheckForOverflow>
+rational<IntType, CheckForOverflow> abs(const rational<IntType, CheckForOverflow>& r);
+
+template <typename IntType, bool CheckForOverflow>
+class rational :
+    less_than_comparable < rational<IntType, CheckForOverflow>,
+    equality_comparable < rational<IntType, CheckForOverflow>,
+    less_than_comparable2 < rational<IntType, CheckForOverflow>, IntType,
+    equality_comparable2 < rational<IntType, CheckForOverflow>, IntType,
+    addable < rational<IntType, CheckForOverflow>,
+    subtractable < rational<IntType, CheckForOverflow>,
+    multipliable < rational<IntType, CheckForOverflow>,
+    dividable < rational<IntType, CheckForOverflow>,
+    addable2 < rational<IntType, CheckForOverflow>, IntType,
+    subtractable2 < rational<IntType, CheckForOverflow>, IntType,
+    subtractable2_left < rational<IntType, CheckForOverflow>, IntType,
+    multipliable2 < rational<IntType, CheckForOverflow>, IntType,
+    dividable2 < rational<IntType, CheckForOverflow>, IntType,
+    dividable2_left < rational<IntType, CheckForOverflow>, IntType,
+    incrementable < rational<IntType, CheckForOverflow>,
+    decrementable < rational<IntType, CheckForOverflow>
+    > > > > > > > > > > > > > > > >
+{
+    // Class-wide pre-conditions
+    BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
+
+    // Checking for overflow requires IntType be signed.
+    BOOST_STATIC_ASSERT(!CheckForOverflow || (CheckForOverflow && std::numeric_limits<IntType>::is_signed));
+
+    // Helper types
+    typedef typename boost::call_traits<IntType>::param_type param_type;
+
+    struct helper { IntType parts[2]; };
+    typedef IntType (helper::* bool_type)[2];
+
+public:
+    typedef IntType int_type;
+    rational() : num(0), den(1) {}
+    rational(param_type n) : num(n), den(1) {}
+    rational(param_type n, param_type d) : num(n), den(d) {normalize();}
+
+    // Default copy constructor and assignment are fine
+
+    // Add assignment from IntType
+    rational& operator=(param_type i) { num = i; den = 1; return *this; }
+
+    // Assign in place
+    rational& assign(param_type n, param_type d);
+
+    // Access to representation
+    IntType numerator() const { return num; }
+    IntType denominator() const { return den; }
+
+    // Arithmetic assignment operators
+    rational& operator+= (const rational& r);
+    rational& operator-= (const rational& r);
+    rational& operator*= (const rational& r);
+    rational& operator/= (const rational& r);
+
+    rational& operator+= (param_type i);
+    rational& operator-= (param_type i);
+    rational& operator*= (param_type i);
+    rational& operator/= (param_type i);
+
+    // Increment and decrement
+    const rational& operator++();
+    const rational& operator--();
+
+    // Operator not
+    bool operator!() const { return !num; }
+
+    // Boolean conversion
+    
+#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
+    // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
+    // following, hence we selectively disable that option for the
+    // offending memfun.
+#pragma parse_mfunc_templ off
+#endif
+
+    operator bool_type() const { return operator !() ? 0 : &helper::parts; }
+
+#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
+#pragma parse_mfunc_templ reset
+#endif
+
+    // Comparison operators
+    bool operator<  (const rational& r) const;
+    bool operator== (const rational& r) const;
+
+    bool operator<  (param_type i) const;
+    bool operator>  (param_type i) const;
+    bool operator== (param_type i) const;
+
+private:
+    // Implementation - numerator and denominator (normalized).
+    // Other possibilities - separate whole-part, or sign, fields?
+    IntType num;
+    IntType den;
+
+    // Representation note: Fractions are kept in normalized form at all
+    // times. Normalized form is defined as gcd(num,den) == 1 and den > 0.
+    // In particular, note that the implementation of abs() below relies
+    // on den always being positive.
+    bool test_invariant() const;
+    void normalize();
+};
+
+// Assign in place
+template <typename IntType, bool CheckForOverflow>
+inline rational<IntType, CheckForOverflow>& rational<IntType, CheckForOverflow>::assign(param_type n, param_type d)
+{
+    num = n;
+    den = d;
+    normalize();
+    return *this;
+}
+
+// Unary plus and minus
+template <typename IntType, bool CheckForOverflow>
+inline rational<IntType, CheckForOverflow> operator+ (const rational<IntType, CheckForOverflow>& r)
+{
+    return r;
+}
+
+template <typename IntType, bool CheckForOverflow>
+inline rational<IntType, CheckForOverflow> operator- (const rational<IntType, CheckForOverflow>& r)
+{
+    IntType negnumer = ~r.numerator(); ++negnumer;
+    if(CheckForOverflow)
+    {
+        if(negnumer && (r.numerator() == negnumer))
+            throw rational_overflow();
+    }
+    return rational<IntType, CheckForOverflow>(negnumer, r.denominator());
+}
+
+// Arithmetic assignment operators
+template <typename IntType, bool CheckForOverflow>
+rational<IntType, CheckForOverflow>& rational<IntType, CheckForOverflow>::operator+= (const rational<IntType, CheckForOverflow>& r)
+{
+    if(CheckForOverflow)
+    {
+        const int numBits = sizeof(IntType)*CHAR_BIT;
+        const IntType zero(0);
+        const IntType one(1);
+        const IntType neg1(-1);
+        IntType part1H,part1L,part2H,part2L,newnumH,T;
+
+        // Protect against self-modification
+        IntType r_num = r.num;
+        IntType r_den = r.den;
+        IntType r_den_g = r.den;
+
+        IntType g = math::gcd(den, r_den);
+
+        if(g != one)
+        {
+            den /= g;
+            r_den_g /= g;
+        }
+
+        mul2Int<IntType, CheckForOverflow>(part1H,part1L,   num,  r_den_g);
+        mul2Int<IntType, CheckForOverflow>(part2H,part2L, r_num,    den);
+        bool  ovfl = add2Int<IntType, CheckForOverflow>(newnumH,  num,part1H,part1L,part2H,part2L);
+        T = num>>(numBits-1);
+        if(newnumH!=T)
+            throw rational_overflow();
+
+        g = math::gcd(num, g);
+        if(g!=one)
+        {
+            num /= g;
+            r_den /= g;
+        }
+
+        mul2Int<IntType, CheckForOverflow>(part1H,den,   den,  r_den);
+        if((part1H!=zero) || (den<zero))
+            throw rational_overflow();
+    }
+    else
+    {
+        // This calculation avoids overflow, and minimises the number of expensive
+        // calculations. Thanks to Nickolay Mladenov for this algorithm.
+        //
+        // Proof:
+        // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
+        // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
+        //
+        // The result is (a*d1 + c*b1) / (b1*d1*g).
+        // Now we have to normalize this ratio.
+        // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
+        // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
+        // But since gcd(a,b1)=1 we have h=1.
+        // Similarly h|d1 leads to h=1.
+        // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
+        // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
+        // Which proves that instead of normalizing the result, it is better to
+        // divide num and den by gcd((a*d1 + c*b1), g)
+
+        // Protect against self-modification
+        IntType r_num = r.num;
+        IntType r_den = r.den;
+
+        IntType g = math::gcd(den, r_den);
+        den /= g;  // = b1 from the calculations above
+        num = num * (r_den / g) + r_num * den;
+        g = math::gcd(num, g);
+        num /= g;
+        den *= r_den/g;
+    }
+
+    return *this;
+}
+
+template <typename IntType, bool CheckForOverflow>
+rational<IntType, CheckForOverflow>& rational<IntType, CheckForOverflow>::operator-= (const rational<IntType, CheckForOverflow>& r)
+{
+    if(CheckForOverflow)
+    {   
+        if((num==r.num) && (den==r.den)) {
+            num = IntType(0);
+            den = IntType(1);
+            return *this;
+        }
+            
+        // Negate the denominator (which is safe), and use constructor 'normalize' to check for overflow.
+        IntType negrden = ~r.den; ++negrden;
+        rational<IntType, CheckForOverflow> negOperand(r.num, negrden);
+        return operator+= (negOperand);
+    }
+    else
+    {
+        // Protect against self-modification
+        IntType r_num = r.num;
+        IntType r_den = r.den;
+
+        // This calculation avoids overflow, and minimises the number of expensive
+        // calculations. It corresponds exactly to the += case above
+        IntType g = math::gcd(den, r_den);
+        den /= g;
+        num = num * (r_den / g) - r_num * den;
+        g = math::gcd(num, g);
+        num /= g;
+        den *= r_den/g;
+
+        return *this;
+    }
+}
+
+template <typename IntType, bool CheckForOverflow>
+rational<IntType, CheckForOverflow>& rational<IntType, CheckForOverflow>::operator*= (const rational<IntType, CheckForOverflow>& r)
+{
+    // Protect against self-modification
+    IntType r_num = r.num;
+    IntType r_den = r.den;
+
+    // Avoid overflow and preserve normalization
+    IntType gcd1 = math::gcd(num, r_den);
+    IntType gcd2 = math::gcd(r_num, den);
+
+    if(CheckForOverflow)
+    {
+        const int numBits = sizeof(IntType)*CHAR_BIT;
+        const IntType one = IntType(1);
+        const IntType zero = IntType(0);
+        IntType num_gcd1=num, den_gcd2=den, signbits;
+        if(gcd1!=one) {
+            num_gcd1 /= gcd1;
+            r_den    /= gcd1;
+        }
+        if(gcd2!=one) {
+            den_gcd2 /= gcd2;
+            r_num    /= gcd2;
+        }
+        mul2Int<IntType, CheckForOverflow>(signbits,num, num_gcd1, r_num);
+        if(IntType(num>>(numBits-1)) != signbits)
+            throw rational_overflow();
+
+        mul2Int<IntType, CheckForOverflow>(signbits,den, den_gcd2, r_den);
+        if((signbits!=zero) || (den<zero))
+            throw rational_overflow();
+    }
+    else
+    {
+        num = (num/gcd1) * (r_num/gcd2);
+        den = (den/gcd2) * (r_den/gcd1);
+    }
+    return *this;
+}
+
+template <typename IntType, bool CheckForOverflow>
+rational<IntType, CheckForOverflow>& rational<IntType, CheckForOverflow>::operator/= (const rational<IntType, CheckForOverflow>& r)
+{
+    // Protect against self-modification
+    IntType r_num = r.num;
+    IntType r_den = r.den;
+
+    // Avoid repeated construction
+    const IntType zero(0);
+
+    // Trap division by zero
+    if (r_num == zero)
+        throw bad_rational();
+    if (num == zero)
+        return *this;
+
+    // Avoid overflow and preserve normalization
+    IntType gcd1 = math::gcd(num, r_num);
+    IntType gcd2 = math::gcd(r_den, den);
+
+    if(CheckForOverflow)
+    {
+        const int numBits = sizeof(IntType)*CHAR_BIT;
+        const IntType one = IntType(1);
+        IntType num_gcd1=num, den_gcd2=den, signbits;
+        if(gcd1!=one) {
+            num_gcd1 /= gcd1;
+            r_num    /= gcd1;
+        }
+        if(gcd2!=one) {
+            den_gcd2 /= gcd2;
+            r_den    /= gcd2;
+        }
+        mul2Int<IntType, CheckForOverflow>(signbits,num, num_gcd1, r_den);
+        if(IntType(num>>(numBits-1)) != signbits)
+            throw rational_overflow();
+
+        mul2Int<IntType, CheckForOverflow>(signbits,den, den_gcd2, r_num);
+        if(IntType(den>>(numBits-1)) != signbits)
+            throw rational_overflow();
+
+        if (den < zero)
+        {
+            IntType negden = ~den; ++negden;
+            IntType negnum = ~num; ++negnum;
+            if(den == negden) // den never zero here
+                throw rational_overflow();
+            if(num && (num == negnum))
+                throw rational_overflow();
+
+            num = negnum;
+            den = negden;
+        }
+    }
+    else
+    {
+        num = (num/gcd1) * (r_den/gcd2);
+        den = (den/gcd2) * (r_num/gcd1);
+
+        if (den < zero) {
+            num = -num;
+            den = -den;
+        }
+    }
+    return *this;
+}
+
+// Mixed-mode operators
+template <typename IntType, bool CheckForOverflow>
+inline rational<IntType, CheckForOverflow>&
+rational<IntType, CheckForOverflow>::operator*= (param_type i)
+{
+    if(CheckForOverflow)
+        return operator*= (rational<IntType, CheckForOverflow>(i));
+
+    // Avoid overflow and preserve normalization
+    IntType gcd = math::gcd(i, den);
+    num *= i / gcd;
+    den /= gcd;
+
+    return *this;
+}
+
+template <typename IntType, bool CheckForOverflow>
+inline rational<IntType, CheckForOverflow>&
+rational<IntType, CheckForOverflow>::operator/= (param_type i)
+{
+    if(CheckForOverflow)
+        return operator/= (rational<IntType, CheckForOverflow>(i));
+
+    // Avoid repeated construction
+    IntType const zero(0);
+
+    if (i == zero) throw bad_rational();
+    if (num == zero) return *this;
+
+    // Avoid overflow and preserve normalization
+    IntType const gcd = math::gcd(num, i);
+    num /= gcd;
+    den *= i / gcd;
+
+    if (den < zero) {
+        num = -num;
+        den = -den;
+    }
+
+    return *this;
+}
+
+template <typename IntType, bool CheckForOverflow>
+inline rational<IntType, CheckForOverflow>&
+rational<IntType, CheckForOverflow>::operator+= (param_type i)
+{
+    if(CheckForOverflow)
+        return operator+= (rational<IntType, CheckForOverflow>(i));
+
+    num += i * den;
+    return *this;
+}
+
+template <typename IntType, bool CheckForOverflow>
+inline rational<IntType, CheckForOverflow>&
+rational<IntType, CheckForOverflow>::operator-= (param_type i)
+{
+    if(CheckForOverflow)
+        return operator-= (rational<IntType, CheckForOverflow>(i));
+
+    num -= i * den;
+    return *this;
+}
+
+// Increment and decrement
+template <typename IntType, bool CheckForOverflow>
+inline const rational<IntType, CheckForOverflow>& rational<IntType, CheckForOverflow>::operator++()
+{
+    if(CheckForOverflow)
+    {
+        const IntType zero( 0 );
+        if((num>zero) && (IntType(num + den) < zero))
+            throw rational_overflow();
+    }
+
+    // This can never denormalise the fraction
+    num += den;
+    return *this;
+}
+
+template <typename IntType, bool CheckForOverflow>
+inline const rational<IntType, CheckForOverflow>& rational<IntType, CheckForOverflow>::operator--()
+{
+    if(CheckForOverflow)
+    {
+        const IntType zero( 0 );
+        if((num<zero) && (IntType(num - den) >= zero))
+            throw rational_overflow();
+    }
+
+    // This can never denormalise the fraction
+    num -= den;
+    return *this;
+}
+
+// Comparison operators
+template <typename IntType, bool CheckForOverflow>
+bool rational<IntType, CheckForOverflow>::operator< (const rational<IntType, CheckForOverflow>& r) const
+{
+    // Avoid repeated construction
+    int_type const  zero( 0 );
+
+    if(CheckForOverflow)
+    {
+        IntType ProdLeftH, ProdLeftL, ProdRghtH, ProdRghtL;
+        mul2Int<IntType, CheckForOverflow>(ProdLeftH, ProdLeftL, num, r.den);
+        mul2Int<IntType, CheckForOverflow>(ProdRghtH, ProdRghtL, r.num, den);
+        if(ProdLeftH < ProdRghtH)
+            return true;
+        else if(ProdLeftH == ProdRghtH)
+        {
+            const int numBits = sizeof(IntType)*CHAR_BIT;
+            const IntType MSBfMask = (IntType)(((IntType)(1)) << (numBits-1));
+            ProdLeftL ^= MSBfMask; // Convert to signed
+            ProdRghtL ^= MSBfMask; // Convert to signed
+            return ProdLeftL < ProdRghtL;
+        }
+        else 
+            return false;
+    }
+    else
+    {
+        // This should really be a class-wide invariant.  The reason for these
+        // checks is that for 2's complement systems, INT_MIN has no corresponding
+        // positive, so negating it during normalization keeps it INT_MIN, which
+        // is bad for later calculations that assume a positive denominator.
+        BOOST_ASSERT( this->den > zero );
+        BOOST_ASSERT( r.den > zero );
+
+        // Determine relative order by expanding each value to its simple continued
+        // fraction representation using the Euclidian GCD algorithm.
+        struct { int_type  n, d, q, r; }  ts = { this->num, this->den, this->num /
+         this->den, this->num % this->den }, rs = { r.num, r.den, r.num / r.den,
+         r.num % r.den };
+        unsigned  reverse = 0u;
+
+        // Normalize negative moduli by repeatedly adding the (positive) denominator
+        // and decrementing the quotient.  Later cycles should have all positive
+        // values, so this only has to be done for the first cycle.  (The rules of
+        // C++ require a nonnegative quotient & remainder for a nonnegative dividend
+        // & positive divisor.)
+        while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }
+        while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }
+
+        // Loop through and compare each variable's continued-fraction components
+        while ( true )
+        {
+            // The quotients of the current cycle are the continued-fraction
+            // components.  Comparing two c.f. is comparing their sequences,
+            // stopping at the first difference.
+            if ( ts.q != rs.q )
+            {
+                // Since reciprocation changes the relative order of two variables,
+                // and c.f. use reciprocals, the less/greater-than test reverses
+                // after each index.  (Start w/ non-reversed @ whole-number place.)
+                return reverse ? ts.q > rs.q : ts.q < rs.q;
+            }
+
+            // Prepare the next cycle
+            reverse ^= 1u;
+
+            if ( (ts.r == zero) || (rs.r == zero) )
+            {
+                // At least one variable's c.f. expansion has ended
+                break;
+            }
+
+            ts.n = ts.d;         ts.d = ts.r;
+            ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;
+            rs.n = rs.d;         rs.d = rs.r;
+            rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;
+        }
+
+        // Compare infinity-valued components for otherwise equal sequences
+        if ( ts.r == rs.r )
+        {
+            // Both remainders are zero, so the next (and subsequent) c.f.
+            // components for both sequences are infinity.  Therefore, the sequences
+            // and their corresponding values are equal.
+            return false;
+        }
+        else
+        {
+    #ifdef BOOST_MSVC
+    #pragma warning(push)
+    #pragma warning(disable:4800)
+    #endif
+            // Exactly one of the remainders is zero, so all following c.f.
+            // components of that variable are infinity, while the other variable
+            // has a finite next c.f. component.  So that other variable has the
+            // lesser value (modulo the reversal flag!).
+            return ( ts.r != zero ) != static_cast<bool>( reverse );
+    #ifdef BOOST_MSVC
+    #pragma warning(pop)
+    #endif
+        }
+    }
+}
+
+template <typename IntType, bool CheckForOverflow>
+bool rational<IntType, CheckForOverflow>::operator< (param_type i) const
+{
+    if(CheckForOverflow)
+    {
+        IntType ProdLeftH, ProdLeftL, ProdRghtH, ProdRghtL;
+        mul2Int<IntType, CheckForOverflow>(ProdLeftH, ProdLeftL, num, IntType(1));
+        mul2Int<IntType, CheckForOverflow>(ProdRghtH, ProdRghtL, i, den);
+        if(ProdLeftH < ProdRghtH)
+            return true;
+        else if(ProdLeftH == ProdRghtH)
+        {
+            const int numBits = sizeof(IntType)*CHAR_BIT;
+            const IntType MSBfMask = (IntType)(((IntType)(1)) << (numBits-1));
+            ProdLeftL ^= MSBfMask; // Convert to signed
+            ProdRghtL ^= MSBfMask; // Convert to signed
+            return ProdLeftL < ProdRghtL;
+        }
+        else 
+            return false;
+    }
+    else
+    {
+        // Avoid repeated construction
+        int_type const  zero( 0 );
+
+        // Break value into mixed-fraction form, w/ always-nonnegative remainder
+        BOOST_ASSERT( this->den > zero );
+        int_type  q = this->num / this->den, r = this->num % this->den;
+        while ( r < zero )  { r += this->den; --q; }
+
+        // Compare with just the quotient, since the remainder always bumps the
+        // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
+        // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
+        // q >= i + 1 > i; therefore n/d < i iff q < i.]
+        return q < i;
+    }
+}
+
+template <typename IntType, bool CheckForOverflow>
+bool rational<IntType, CheckForOverflow>::operator> (param_type i) const
+{
+    return operator==(i)? false: !operator<(i);
+}
+
+template <typename IntType, bool CheckForOverflow>
+inline bool rational<IntType, CheckForOverflow>::operator== (const rational<IntType, CheckForOverflow>& r) const
+{
+    return ((num == r.num) && (den == r.den));
+}
+
+template <typename IntType, bool CheckForOverflow>
+inline bool rational<IntType, CheckForOverflow>::operator== (param_type i) const
+{
+    return ((den == IntType(1)) && (num == i));
+}
+
+// Invariant check
+template <typename IntType, bool CheckForOverflow>
+inline bool rational<IntType, CheckForOverflow>::test_invariant() const
+{
+    return  ( this->den > int_type(0) ) && ( math::gcd(this->num, this->den) ==
+     int_type(1) );
+}
+
+// Normalisation
+template <typename IntType, bool CheckForOverflow>
+void rational<IntType, CheckForOverflow>::normalize()
+{
+    // Avoid repeated construction
+    const IntType zero(0);
+
+    if (den == zero)
+        throw bad_rational();
+
+    // Handle the case of zero separately, to avoid division by zero
+    const IntType one(1);
+    if (num == zero) {
+        den = one;
+        return;
+    }
+
+    IntType g = math::gcd(num, den);
+
+    if(g != one)
+    {
+        num /= g;
+        den /= g;
+    }
+
+    // Ensure that the denominator is positive
+    if (den < zero)
+    {
+        IntType negden = ~den; ++negden;
+        IntType negnum = ~num; ++negnum;
+        if(CheckForOverflow)
+        {
+            if(den == negden)  // den never zero here
+                throw rational_overflow();
+            if(num == negnum)  // num never zero here
+                throw rational_overflow();
+        }
+        den = negden;
+        num = negnum;
+    }
+
+    BOOST_ASSERT( this->test_invariant() );
+}
+
+namespace detail {
+
+    // A utility class to reset the format flags for an istream at end
+    // of scope, even in case of exceptions
+    struct resetter {
+        resetter(std::istream& is) : is_(is), f_(is.flags()) {}
+        ~resetter() { is_.flags(f_); }
+        std::istream& is_;
+        std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
+    };
+
+}
+
+// Input and output
+template <typename IntType, bool CheckForOverflow>
+std::istream& operator>> (std::istream& is, rational<IntType, CheckForOverflow>& r)
+{
+    IntType n = IntType(0), d = IntType(1);
+    char c = 0;
+    detail::resetter sentry(is);
+
+    is >> n;
+    c = is.get();
+
+    if (c != '/')
+        is.clear(std::istream::badbit);  // old GNU c++ lib has no ios_base
+
+#if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT
+    is >> std::noskipws;
+#else
+    is.unsetf(ios::skipws); // compiles, but seems to have no effect.
+#endif
+    is >> d;
+
+    if (is)
+        r.assign(n, d);
+
+    return is;
+}
+
+// Add manipulators for output format?
+template <typename IntType, bool CheckForOverflow>
+std::ostream& operator<< (std::ostream& os, const rational<IntType, CheckForOverflow>& r)
+{
+    os << r.numerator() << '/' << r.denominator();
+    return os;
+}
+
+// Create overloads for signed char, so numbers will get printed, instead of characters.
+std::ostream& operator<< (std::ostream& os, const rational<signed char, true>& r)
+{
+    os << (int)r.numerator() << '/' << (int)r.denominator();
+    return os;
+}
+
+std::ostream& operator<< (std::ostream& os, const rational<signed char, false>& r)
+{
+    os << (int)r.numerator() << '/' << (int)r.denominator();
+    return os;
+}
+
+
+// Type conversion
+template <typename T, typename IntType, bool CheckForOverflow>
+inline T rational_cast(
+    const rational<IntType, CheckForOverflow>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+{
+    return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
+}
+
+// Do not use any abs() defined on IntType - it isn't worth it, given the
+// difficulties involved (Koenig lookup required, there may not *be* an abs()
+// defined, etc etc).
+template <typename IntType, bool CheckForOverflow>
+inline rational<IntType, CheckForOverflow> abs(const rational<IntType, CheckForOverflow>& r)
+{
+    if(CheckForOverflow)
+    {
+        const IntType zero(0);
+
+        if (r.numerator() >= zero)
+            return r;
+        else
+        {
+            IntType negnumer = ~r.numerator(); ++negnumer;
+            if(r.numerator() == negnumer) // numer is never zero here
+                throw rational_overflow();
+
+            return -r;
+        }
+    }
+    else
+        return r.numerator() >= IntType(0)? r: -r;
+}
+
+typedef rational<signed char,true>   RatSCharwOvCk;
+typedef rational<signed char,false>  RatSChar;
+
+typedef rational<short,true>         RatSShortwOvCk;
+typedef rational<short,false>        RatShort;
+
+typedef rational<int,true>           RatSIntwOvCk;
+typedef rational<int,false>          RatSInt;
+
+typedef rational<long long,true>     RatSLLwOvCk;
+typedef rational<long long,false>    RatSLL;
+
+
+} // namespace boost
+
+
+#endif  // BOOST_RATIONAL_HPP
+