$include_dir="/home/hyper-archives/boost-commit/include"; include("$include_dir/msg-header.inc") ?>
Subject: [Boost-commit] svn:boost r51094 - trunk/boost/graph
From: asutton_at_[hidden]
Date: 2009-02-08 09:51:58
Author: asutton
Date: 2009-02-08 09:51:58 EST (Sun, 08 Feb 2009)
New Revision: 51094
URL: http://svn.boost.org/trac/boost/changeset/51094
Log:
Importing all_cliques, all_cycles algorithms
Added:
   trunk/boost/graph/bron_kerbosch_all_cliques.hpp   (contents, props changed)
      - copied, changed from r51086, /sandbox/SOC/2007/graphs/boost/graph/bron_kerbosch_all_cliques.hpp
   trunk/boost/graph/tiernan_all_cycles.hpp   (contents, props changed)
      - copied, changed from r51086, /sandbox/SOC/2007/graphs/boost/graph/tiernan_all_cycles.hpp
Text files modified: 
   trunk/boost/graph/bron_kerbosch_all_cliques.hpp |   508 +++++++++++++++++---------------        
   trunk/boost/graph/directed_graph.hpp            |    23                                         
   trunk/boost/graph/tiernan_all_cycles.hpp        |   611 ++++++++++++++++++++------------------- 
   trunk/boost/graph/undirected_graph.hpp          |    20 +                                       
   4 files changed, 612 insertions(+), 550 deletions(-)
Copied: trunk/boost/graph/bron_kerbosch_all_cliques.hpp (from r51086, /sandbox/SOC/2007/graphs/boost/graph/bron_kerbosch_all_cliques.hpp)
==============================================================================
--- /sandbox/SOC/2007/graphs/boost/graph/bron_kerbosch_all_cliques.hpp	(original)
+++ trunk/boost/graph/bron_kerbosch_all_cliques.hpp	2009-02-08 09:51:58 EST (Sun, 08 Feb 2009)
@@ -1,4 +1,4 @@
-// (C) Copyright Andrew Sutton 2007
+// (C) Copyright 2007-2009 Andrew Sutton
 //
 // Use, modification and distribution are subject to the
 // Boost Software License, Version 1.0 (See accompanying file
@@ -10,274 +10,300 @@
 #include <vector>
 #include <deque>
 
-#include <boost/graph/new_graph_concepts.hpp>
+#include <boost/graph/graph_concepts.hpp>
+
+#include <boost/concept/detail/concept_def.hpp>
+namespace boost {
+    namespace concepts {
+        BOOST_concept(CliqueVisitor,(Visitor)(Clique)(Graph))
+        {
+            BOOST_CONCEPT_USAGE(CliqueVisitor)
+            {
+                vis.clique(k, g);
+            }
+        private:
+            Visitor vis;
+            Graph g;
+            Clique k;
+        };
+    } /* namespace concepts */
+using concepts::CliqueVisitorConcept;
+} /* namespace boost */
+#include <boost/concept/detail/concept_undef.hpp>
 
 namespace boost
 {
+// The algorithm implemented in this paper is based on the so-called
+// Algorithm 457, published as:
+//
+//     @article{362367,
+//         author = {Coen Bron and Joep Kerbosch},
+//         title = {Algorithm 457: finding all cliques of an undirected graph},
+//         journal = {Communications of the ACM},
+//         volume = {16},
+//         number = {9},
+//         year = {1973},
+//         issn = {0001-0782},
+//         pages = {575--577},
+//         doi = {http://doi.acm.org/10.1145/362342.362367},
+//             publisher = {ACM Press},
+//             address = {New York, NY, USA},
+//         }
+//
+// Sort of. This implementation is adapted from the 1st version of the
+// algorithm and does not implement the candidate selection optimization
+// described as published - it could, it just doesn't yet.
+//
+// The algorithm is given as proportional to (3.14)^(n/3) power. This is
+// not the same as O(...), but based on time measures and approximation.
+//
+// Unfortunately, this implementation may be less efficient on non-
+// AdjacencyMatrix modeled graphs due to the non-constant implementation
+// of the edge(u,v,g) functions.
+//
+// TODO: It might be worthwhile to provide functionality for passing
+// a connectivity matrix to improve the efficiency of those lookups
+// when needed. This could simply be passed as a BooleanMatrix
+// s.t. edge(u,v,B) returns true or false. This could easily be
+// abstracted for adjacency matricies.
+//
+// The following paper is interesting for a number of reasons. First,
+// it lists a number of other such algorithms and second, it describes
+// a new algorithm (that does not appear to require the edge(u,v,g)
+// function and appears fairly efficient. It is probably worth investigating.
+//
+//      @article{DBLP:journals/tcs/TomitaTT06,
+//          author = {Etsuji Tomita and Akira Tanaka and Haruhisa Takahashi},
+//          title = {The worst-case time complexity for generating all maximal cliques and computational experiments},
+//          journal = {Theor. Comput. Sci.},
+//          volume = {363},
+//          number = {1},
+//          year = {2006},
+//          pages = {28-42}
+//          ee = {http://dx.doi.org/10.1016/j.tcs.2006.06.015}
+//      }
+
+/**
+ * The default clique_visitor supplies an empty visitation function.
+ */
+struct clique_visitor
+{
+    template <typename VertexSet, typename Graph>
+    void clique(const VertexSet&, Graph&)
+    { }
+};
+
+/**
+ * The max_clique_visitor records the size of the maximum clique (but not the
+ * clique itself).
+ */
+struct max_clique_visitor
+{
+    max_clique_visitor(std::size_t& max)
+        : maximum(max)
+    { }
 
-    // The algorithm implemented in this paper is based on the so-called
-    // Algorithm 457, published as:
-    //
-    //     @article{362367,
-    //         author = {Coen Bron and Joep Kerbosch},
-    //         title = {Algorithm 457: finding all cliques of an undirected graph},
-    //         journal = {Communications of the ACM},
-    //         volume = {16},
-    //         number = {9},
-    //         year = {1973},
-    //         issn = {0001-0782},
-    //         pages = {575--577},
-    //         doi = {http://doi.acm.org/10.1145/362342.362367},
-    //             publisher = {ACM Press},
-    //             address = {New York, NY, USA},
-    //         }
-    //
-    // Sort of. This implementation is adapted from the 1st version of the
-    // algorithm and does not implement the candidate selection optimization
-    // described as published - it could, it just doesn't yet.
-    //
-    // The algorithm is given as proportional to (3.14)^(n/3) power. This is
-    // not the same as O(...), but based on time measures and approximation.
-    //
-    // Unfortunately, this implementation may be less efficient on non-
-    // AdjacencyMatrix modeled graphs due to the non-constant implementation
-    // of the edge(u,v,g) functions.
-    //
-    // TODO: It might be worthwhile to provide functionality for passing
-    // a connectivity matrix to improve the efficiency of those lookups
-    // when needed. This could simply be passed as a BooleanMatrix
-    // s.t. edge(u,v,B) returns true or false. This could easily be
-    // abstracted for adjacency matricies.
-    //
-    // The following paper is interesting for a number of reasons. First,
-    // it lists a number of other such algorithms and second, it describes
-    // a new algorithm (that does not appear to require the edge(u,v,g)
-    // function and appears fairly efficient. It is probably worth investigating.
-    //
-    //      @article{DBLP:journals/tcs/TomitaTT06,
-    //          author = {Etsuji Tomita and Akira Tanaka and Haruhisa Takahashi},
-    //          title = {The worst-case time complexity for generating all maximal cliques and computational experiments},
-    //          journal = {Theor. Comput. Sci.},
-    //          volume = {363},
-    //          number = {1},
-    //          year = {2006},
-    //          pages = {28-42}
-    //          ee = {http://dx.doi.org/10.1016/j.tcs.2006.06.015}
-    //      }
-
-    struct clique_visitor
+    template <typename Clique, typename Graph>
+    inline void clique(const Clique& p, const Graph& g)
     {
-        template <typename VertexSet, typename Graph>
-        void clique(const VertexSet&, Graph&)
-        { }
-    };
+        maximum = std::max(maximum, p.size());
+    }
+    std::size_t& maximum;
+};
 
-    struct max_clique_visitor
+inline max_clique_visitor find_max_clique(std::size_t& max)
+{ return max_clique_visitor(max); }
+
+namespace detail
+{
+    template <typename Graph>
+    inline bool
+    is_connected_to_clique(const Graph& g,
+                            typename graph_traits<Graph>::vertex_descriptor u,
+                            typename graph_traits<Graph>::vertex_descriptor v,
+                            typename graph_traits<Graph>::undirected_category)
     {
-        max_clique_visitor(std::size_t& max)
-            : maximum(max)
-        { }
+        function_requires< AdjacencyMatrixConcept<Graph> >();
 
-        template <typename Clique, typename Graph>
-        inline void clique(const Clique& p, const Graph& g)
-        {
-            maximum = std::max(maximum, p.size());
-        }
-        std::size_t& maximum;
-    };
+        return edge(u, v, g).second;
+    }
 
-    inline max_clique_visitor find_max_clique(std::size_t& max)
-    { return max_clique_visitor(max); }
+    template <typename Graph>
+    inline bool
+    is_connected_to_clique(const Graph& g,
+                            typename graph_traits<Graph>::vertex_descriptor u,
+                            typename graph_traits<Graph>::vertex_descriptor v,
+                            typename graph_traits<Graph>::directed_category)
+    {
+        function_requires< AdjacencyMatrixConcept<Graph> >();
+        // Note that this could alternate between using an || to determine
+        // full connectivity. I believe that this should produce strongly
+        // connected components. Note that using && instead of || will
+        // change the results to a fully connected subgraph (i.e., symmetric
+        // edges between all vertices s.t., if a->b, then b->a.
+        return edge(u, v, g).second && edge(v, u, g).second;
+    }
 
-    namespace detail
+    template <typename Graph, typename Container>
+    inline void
+    filter_unconnected_vertices(const Graph& g,
+                                typename graph_traits<Graph>::vertex_descriptor v,
+                                const Container& in,
+                                Container& out)
     {
-        template <typename Graph>
-        inline bool
-        is_connected_to_clique(const Graph& g,
-                               typename graph_traits<Graph>::vertex_descriptor u,
-                               typename graph_traits<Graph>::vertex_descriptor v,
-                               typename graph_traits<Graph>::undirected_category)
-        {
-            function_requires< AdjacencyMatrixConcept<Graph> >();
+        function_requires< GraphConcept<Graph> >();
 
-            return edge(u, v, g).second;
+        typename graph_traits<Graph>::directed_category cat;
+        typename Container::const_iterator i, end = in.end();
+        for(i = in.begin(); i != end; ++i) {
+            if(is_connected_to_clique(g, v, *i, cat)) {
+                out.push_back(*i);
+            }
         }
+    }
 
-        template <typename Graph>
-        inline bool
-        is_connected_to_clique(const Graph& g,
-                               typename graph_traits<Graph>::vertex_descriptor u,
-                               typename graph_traits<Graph>::vertex_descriptor v,
-                               typename graph_traits<Graph>::directed_category)
-        {
-            function_requires< AdjacencyMatrixConcept<Graph> >();
-            // Note that this could alternate between using an || to determine
-            // full connectivity. I believe that this should produce strongly
-            // connected components. Note that using && instead of || will
-            // change the results to a fully connected subgraph (i.e., symmetric
-            // edges between all vertices s.t., if a->b, then b->a.
-            return edge(u, v, g).second && edge(v, u, g).second;
-        }
+    template <
+        typename Graph,
+        typename Clique,        // compsub type
+        typename Container,     // candidates/not type
+        typename Visitor>
+    void extend_clique(const Graph& g,
+                        Clique& clique,
+                        Container& cands,
+                        Container& nots,
+                        Visitor vis,
+                        std::size_t min)
+    {
+        function_requires< GraphConcept<Graph> >();
+        function_requires< CliqueVisitorConcept<Visitor,Clique,Graph> >();
+        typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
 
-        template <typename Graph, typename Container>
-        inline void
-        filter_unconnected_vertices(const Graph& g,
-                                    typename graph_traits<Graph>::vertex_descriptor v,
-                                    const Container& in,
-                                    Container& out)
+        // Is there vertex in nots that is connected to all vertices
+        // in the candidate set? If so, no clique can ever be found.
+        // This could be broken out into a separate function.
         {
-            function_requires< GraphConcept<Graph> >();
-
-            typename graph_traits<Graph>::directed_category cat;
-            typename Container::const_iterator i, end = in.end();
-            for(i = in.begin(); i != end; ++i) {
-                if(is_connected_to_clique(g, v, *i, cat)) {
-                    out.push_back(*i);
+            typename Container::iterator ni, nend = nots.end();
+            typename Container::iterator ci, cend = cands.end();
+            for(ni = nots.begin(); ni != nend; ++ni) {
+                for(ci = cands.begin(); ci != cend; ++ci) {
+                    // if we don't find an edge, then we're okay.
+                    if(!edge(*ni, *ci, g).second) break;
                 }
+                // if we iterated all the way to the end, then *ni
+                // is connected to all *ci
+                if(ci == cend) break;
             }
+            // if we broke early, we found *ni connected to all *ci
+            if(ni != nend) return;
         }
 
-        template <typename Graph,
-                  typename Clique,        // compsub type
-                  typename Container,     // candidates/not type
-                  typename Visitor>
-        void extend_clique(const Graph& g,
-                           Clique& clique,
-                           Container& cands,
-                           Container& nots,
-                           Visitor vis,
-                           std::size_t min)
-        {
-            function_requires< GraphConcept<Graph> >();
-            function_requires< CliqueVisitorConcept<Visitor,Clique,Graph> >();
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-
-            // Is there vertex in nots that is connected to all vertices
-            // in the candidate set? If so, no clique can ever be found.
-            // This could be broken out into a separate function.
-            {
-                typename Container::iterator ni, nend = nots.end();
-                typename Container::iterator ci, cend = cands.end();
-                for(ni = nots.begin(); ni != nend; ++ni) {
-                    for(ci = cands.begin(); ci != cend; ++ci) {
-                        // if we don't find an edge, then we're okay.
-                        if(!edge(*ni, *ci, g).second) break;
-                    }
-                    // if we iterated all the way to the end, then *ni
-                    // is connected to all *ci
-                    if(ci == cend) break;
+        // TODO: the original algorithm 457 describes an alternative
+        // (albeit really complicated) mechanism for selecting candidates.
+        // The given optimizaiton seeks to bring about the above
+        // condition sooner (i.e., there is a vertex in the not set
+        // that is connected to all candidates). unfortunately, the
+        // method they give for doing this is fairly unclear.
+
+        // basically, for every vertex in not, we should know how many
+        // vertices it is disconnected from in the candidate set. if
+        // we fix some vertex in the not set, then we want to keep
+        // choosing vertices that are not connected to that fixed vertex.
+        // apparently, by selecting fix point with the minimum number
+        // of disconnections (i.e., the maximum number of connections
+        // within the candidate set), then the previous condition wil
+        // be reached sooner.
+
+        // there's some other stuff about using the number of disconnects
+        // as a counter, but i'm jot really sure i followed it.
+
+        // TODO: If we min-sized cliques to visit, then theoretically, we
+        // should be able to stop recursing if the clique falls below that
+        // size - maybe?
+
+        // otherwise, iterate over candidates and and test
+        // for maxmimal cliquiness.
+        typename Container::iterator i, j, end = cands.end();
+        for(i = cands.begin(); i != cands.end(); ) {
+            Vertex candidate = *i;
+
+            // add the candidate to the clique (keeping the iterator!)
+            // typename Clique::iterator ci = clique.insert(clique.end(), candidate);
+            clique.push_back(candidate);
+
+            // remove it from the candidate set
+            i = cands.erase(i);
+
+            // build new candidate and not sets by removing all vertices
+            // that are not connected to the current candidate vertex.
+            // these actually invert the operation, adding them to the new
+            // sets if the vertices are connected. its semantically the same.
+            Container new_cands, new_nots;
+            filter_unconnected_vertices(g, candidate, cands, new_cands);
+            filter_unconnected_vertices(g, candidate, nots, new_nots);
+
+            if(new_cands.empty() && new_nots.empty()) {
+                // our current clique is maximal since there's nothing
+                // that's connected that we haven't already visited. If
+                // the clique is below our radar, then we won't visit it.
+                if(clique.size() >= min) {
+                    vis.clique(clique, g);
                 }
-                // if we broke early, we found *ni connected to all *ci
-                if(ni != nend) return;
             }
-
-            // TODO: the original algorithm 457 describes an alternative
-            // (albeit really complicated) mechanism for selecting candidates.
-            // The given optimizaiton seeks to bring about the above
-            // condition sooner (i.e., there is a vertex in the not set
-            // that is connected to all candidates). unfortunately, the
-            // method they give for doing this is fairly unclear.
-
-            // basically, for every vertex in not, we should know how many
-            // vertices it is disconnected from in the candidate set. if
-            // we fix some vertex in the not set, then we want to keep
-            // choosing vertices that are not connected to that fixed vertex.
-            // apparently, by selecting fix point with the minimum number
-            // of disconnections (i.e., the maximum number of connections
-            // within the candidate set), then the previous condition wil
-            // be reached sooner.
-
-            // there's some other stuff about using the number of disconnects
-            // as a counter, but i'm jot really sure i followed it.
-
-            // TODO: If we min-sized cliques to visit, then theoretically, we
-            // should be able to stop recursing if the clique falls below that
-            // size - maybe?
-
-            // otherwise, iterate over candidates and and test
-            // for maxmimal cliquiness.
-            typename Container::iterator i, j, end = cands.end();
-            for(i = cands.begin(); i != cands.end(); ) {
-                Vertex candidate = *i;
-
-                // add the candidate to the clique (keeping the iterator!)
-                // typename Clique::iterator ci = clique.insert(clique.end(), candidate);
-                clique.push_back(candidate);
-
-                // remove it from the candidate set
-                i = cands.erase(i);
-
-                // build new candidate and not sets by removing all vertices
-                // that are not connected to the current candidate vertex.
-                // these actually invert the operation, adding them to the new
-                // sets if the vertices are connected. its semantically the same.
-                Container new_cands, new_nots;
-                filter_unconnected_vertices(g, candidate, cands, new_cands);
-                filter_unconnected_vertices(g, candidate, nots, new_nots);
-
-                if(new_cands.empty() && new_nots.empty()) {
-                    // our current clique is maximal since there's nothing
-                    // that's connected that we haven't already visited. If
-                    // the clique is below our radar, then we won't visit it.
-                    if(clique.size() >= min) {
-                        vis.clique(clique, g);
-                    }
-                }
-                else {
-                    // recurse to explore the new candidates
-                    extend_clique(g, clique, new_cands, new_nots, vis, min);
-                }
-
-                // we're done with this vertex, so we need to move it
-                // to the nots, and remove the candidate from the clique.
-                nots.push_back(candidate);
-                clique.pop_back();
+            else {
+                // recurse to explore the new candidates
+                extend_clique(g, clique, new_cands, new_nots, vis, min);
             }
+
+            // we're done with this vertex, so we need to move it
+            // to the nots, and remove the candidate from the clique.
+            nots.push_back(candidate);
+            clique.pop_back();
         }
     }
+} /* namespace detail */
 
-    template <typename Graph, typename Visitor>
-    inline void
-    bron_kerbosch_all_cliques(const Graph& g, Visitor vis, std::size_t min)
-    {
-        function_requires< IncidenceGraphConcept<Graph> >();
-        function_requires< VertexListGraphConcept<Graph> >();
-        function_requires< VertexIndexGraphConcept<Graph> >();
-        function_requires< AdjacencyMatrixConcept<Graph> >(); // Structural requirement only
-        typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-        typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
-        typedef std::vector<Vertex> VertexSet;
-        typedef std::deque<Vertex> Clique;
-        function_requires< CliqueVisitorConcept<Visitor,Clique,Graph> >();
-
-        // NOTE: We're using a deque to implement the clique, because it provides
-        // constant inserts and removals at the end and also a constant size.
-
-        VertexIterator i, end;
-        tie(i, end) = vertices(g);
-        VertexSet cands(i, end);    // start with all vertices as candidates
-        VertexSet nots;             // start with no vertices visited
-
-        Clique clique;              // the first clique is an empty vertex set
-        detail::extend_clique(g, clique, cands, nots, vis, min);
-    }
+template <typename Graph, typename Visitor>
+inline void
+bron_kerbosch_all_cliques(const Graph& g, Visitor vis, std::size_t min)
+{
+    function_requires< IncidenceGraphConcept<Graph> >();
+    function_requires< VertexListGraphConcept<Graph> >();
+    function_requires< VertexIndexGraphConcept<Graph> >();
+    function_requires< AdjacencyMatrixConcept<Graph> >(); // Structural requirement only
+    typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+    typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
+    typedef std::vector<Vertex> VertexSet;
+    typedef std::deque<Vertex> Clique;
+    function_requires< CliqueVisitorConcept<Visitor,Clique,Graph> >();
+
+    // NOTE: We're using a deque to implement the clique, because it provides
+    // constant inserts and removals at the end and also a constant size.
+
+    VertexIterator i, end;
+    tie(i, end) = vertices(g);
+    VertexSet cands(i, end);    // start with all vertices as candidates
+    VertexSet nots;             // start with no vertices visited
 
-    template <typename Graph, typename Visitor>
-    inline void
-    bron_kerbosch_all_cliques(const Graph& g, Visitor vis)
-    {
-        // Default is 2 since a single vertex isn't connected to anything.
-        bron_kerbosch_all_cliques(g, vis, 2);
-    }
+    Clique clique;              // the first clique is an empty vertex set
+    detail::extend_clique(g, clique, cands, nots, vis, min);
+}
 
-    template <typename Graph>
-    inline std::size_t
-    bron_kerbosch_clique_number(const Graph& g)
-    {
-        std::size_t ret = 0;
-        bron_kerbosch_all_cliques(g, find_max_clique(ret));
-        return ret;
-    }
+// NOTE: By default the minimum number of vertices per clique is set at 2
+// because singleton cliques aren't really very interesting.
+template <typename Graph, typename Visitor>
+inline void
+bron_kerbosch_all_cliques(const Graph& g, Visitor vis)
+{ bron_kerbosch_all_cliques(g, vis, 2); }
+
+template <typename Graph>
+inline std::size_t
+bron_kerbosch_clique_number(const Graph& g)
+{
+    std::size_t ret = 0;
+    bron_kerbosch_all_cliques(g, find_max_clique(ret));
+    return ret;
 }
 
+} /* namespace boost */
+
 #endif
Modified: trunk/boost/graph/directed_graph.hpp
==============================================================================
--- trunk/boost/graph/directed_graph.hpp	(original)
+++ trunk/boost/graph/directed_graph.hpp	2009-02-08 09:51:58 EST (Sun, 08 Feb 2009)
@@ -16,21 +16,20 @@
 struct directed_graph_tag { };
 
 /**
-* The directed_graph class template is a simplified version of the BGL
-* adjacency list. This class is provided for ease of use, but may not
-* perform as well as custom-defined adjacency list classes. Instances of
-* this template model the BidirectionalGraph, VertexIndexGraph, and
-* EdgeIndexGraph concepts. The graph is also fully mutable, supporting
-* both insertions and removals.
-*
-* @note Special care must be taken when removing vertices or edges since
-* those operations can invalidate the numbering of vertices.
-*/
+ * The directed_graph class template is a simplified version of the BGL
+ * adjacency list. This class is provided for ease of use, but may not
+ * perform as well as custom-defined adjacency list classes. Instances of
+ * this template model the BidirectionalGraph, VertexIndexGraph, and
+ * EdgeIndexGraph concepts. The graph is also fully mutable, supporting
+ * both insertions and removals of vertices and edges.
+ *
+ * @note Special care must be taken when removing vertices or edges since
+ * those operations can invalidate the numbering of vertices.
+ */
 template <
     typename VertexProperty = no_property,
     typename EdgeProperty = no_property,
-    typename GraphProperty = no_property
->
+    typename GraphProperty = no_property>
 class directed_graph
 {
     // Wrap the user-specified properties with an index.
Copied: trunk/boost/graph/tiernan_all_cycles.hpp (from r51086, /sandbox/SOC/2007/graphs/boost/graph/tiernan_all_cycles.hpp)
==============================================================================
--- /sandbox/SOC/2007/graphs/boost/graph/tiernan_all_cycles.hpp	(original)
+++ trunk/boost/graph/tiernan_all_cycles.hpp	2009-02-08 09:51:58 EST (Sun, 08 Feb 2009)
@@ -1,4 +1,4 @@
-// (C) Copyright Andrew Sutton 2007
+// (C) Copyright 2007-2009 Andrew Sutton
 //
 // Use, modification and distribution are subject to the
 // Boost Software License, Version 1.0 (See accompanying file
@@ -9,340 +9,365 @@
 
 #include <vector>
 
-#include <boost/graph/new_graph_concepts.hpp>
+#include <boost/graph/graph_concepts.hpp>
 #include <boost/graph/graph_traits.hpp>
 #include <boost/graph/properties.hpp>
 
+#include <boost/concept/detail/concept_def.hpp>
+namespace boost {
+    namespace concepts {
+        BOOST_concept(CycleVisitor,(Visitor)(Path)(Graph))
+        {
+            BOOST_CONCEPT_USAGE(CycleVisitor)
+            {
+                vis.cycle(p, g);
+            }
+        private:
+            Visitor vis;
+            Graph g;
+            Path p;
+        };
+    } /* namespace concepts */
+using concepts::CycleVisitorConcept;
+} /* namespace boost */
+#include <boost/concept/detail/concept_undef.hpp>
+
+
 namespace boost
 {
 
-    // The implementation of this algorithm is a reproduction of the Teirnan
-    // approach for directed graphs: bibtex follows
-    //
-    //     @article{362819,
-    //         author = {James C. Tiernan},
-    //         title = {An efficient search algorithm to find the elementary circuits of a graph},
-    //         journal = {Commun. ACM},
-    //         volume = {13},
-    //         number = {12},
-    //         year = {1970},
-    //         issn = {0001-0782},
-    //         pages = {722--726},
-    //         doi = {http://doi.acm.org/10.1145/362814.362819},
-    //             publisher = {ACM Press},
-    //             address = {New York, NY, USA},
-    //         }
-    //
-    // It should be pointed out that the author does not provide a complete analysis for
-    // either time or space. This is in part, due to the fact that it's a fairly input
-    // sensitive problem related to the density and construction of the graph, not just
-    // its size.
-    //
-    // I've also taken some liberties with the interpretation of the algorithm - I've
-    // basically modernized it to use real data structures (no more arrays and matrices).
-    // Oh... and there's explicit control structures - not just gotos.
-    //
-    // The problem is definitely NP-complete, an an unbounded implementation of this
-    // will probably run for quite a while on a large graph. The conclusions
-    // of this paper also reference a Paton algorithm for undirected graphs as being
-    // much more efficient (apparently based on spanning trees). Although not implemented,
-    // it can be found here:
-    //
-    //     @article{363232,
-    //         author = {Keith Paton},
-    //         title = {An algorithm for finding a fundamental set of cycles of a graph},
-    //         journal = {Commun. ACM},
-    //         volume = {12},
-    //         number = {9},
-    //         year = {1969},
-    //         issn = {0001-0782},
-    //         pages = {514--518},
-    //         doi = {http://doi.acm.org/10.1145/363219.363232},
-    //             publisher = {ACM Press},
-    //             address = {New York, NY, USA},
-    //         }
+// The implementation of this algorithm is a reproduction of the Teirnan
+// approach for directed graphs: bibtex follows
+//
+//     @article{362819,
+//         author = {James C. Tiernan},
+//         title = {An efficient search algorithm to find the elementary circuits of a graph},
+//         journal = {Commun. ACM},
+//         volume = {13},
+//         number = {12},
+//         year = {1970},
+//         issn = {0001-0782},
+//         pages = {722--726},
+//         doi = {http://doi.acm.org/10.1145/362814.362819},
+//             publisher = {ACM Press},
+//             address = {New York, NY, USA},
+//         }
+//
+// It should be pointed out that the author does not provide a complete analysis for
+// either time or space. This is in part, due to the fact that it's a fairly input
+// sensitive problem related to the density and construction of the graph, not just
+// its size.
+//
+// I've also taken some liberties with the interpretation of the algorithm - I've
+// basically modernized it to use real data structures (no more arrays and matrices).
+// Oh... and there's explicit control structures - not just gotos.
+//
+// The problem is definitely NP-complete, an an unbounded implementation of this
+// will probably run for quite a while on a large graph. The conclusions
+// of this paper also reference a Paton algorithm for undirected graphs as being
+// much more efficient (apparently based on spanning trees). Although not implemented,
+// it can be found here:
+//
+//     @article{363232,
+//         author = {Keith Paton},
+//         title = {An algorithm for finding a fundamental set of cycles of a graph},
+//         journal = {Commun. ACM},
+//         volume = {12},
+//         number = {9},
+//         year = {1969},
+//         issn = {0001-0782},
+//         pages = {514--518},
+//         doi = {http://doi.acm.org/10.1145/363219.363232},
+//             publisher = {ACM Press},
+//             address = {New York, NY, USA},
+//         }
+
+/**
+ * The default cycle visitor providse an empty visit function for cycle
+ * visitors.
+ */
+struct cycle_visitor
+{
+    template <typename Path, typename Graph>
+    inline void cycle(const Path& p, const Graph& g)
+    { }
+};
+
+/**
+ * The min_max_cycle_visitor simultaneously records the minimum and maximum
+ * cycles in a graph.
+ */
+struct min_max_cycle_visitor
+{
+    min_max_cycle_visitor(std::size_t& min, std::size_t& max)
+        : minimum(min), maximum(max)
+    { }
 
-    struct cycle_visitor
+    template <typename Path, typename Graph>
+    inline void cycle(const Path& p, const Graph& g)
     {
-        template <typename Path, typename Graph>
-        inline void cycle(const Path& p, const Graph& g)
-        { }
-    };
+        std::size_t len = p.size();
+        minimum = std::min(minimum, len);
+        maximum = std::max(maximum, len);
+    }
+    std::size_t& minimum;
+    std::size_t& maximum;
+};
+
+inline min_max_cycle_visitor
+find_min_max_cycle(std::size_t& min, std::size_t& max)
+{ return min_max_cycle_visitor(min, max); }
 
-    struct min_max_cycle_visitor
+namespace detail
+{
+    template <typename Graph, typename Path>
+    inline bool
+    is_vertex_in_path(const Graph&,
+                        typename graph_traits<Graph>::vertex_descriptor v,
+                        const Path& p)
     {
-        min_max_cycle_visitor(std::size_t& min, std::size_t& max)
-            : minimum(min), maximum(max)
-        { }
+        return (std::find(p.begin(), p.end(), v) != p.end());
+    }
 
-        template <typename Path, typename Graph>
-        inline void cycle(const Path& p, const Graph& g)
-        {
-            std::size_t len = p.size();
-            minimum = std::min(minimum, len);
-            maximum = std::max(maximum, len);
+    template <typename Graph, typename ClosedMatrix>
+    inline bool
+    is_path_closed(const Graph& g,
+                    typename graph_traits<Graph>::vertex_descriptor u,
+                    typename graph_traits<Graph>::vertex_descriptor v,
+                    const ClosedMatrix& closed)
+    {
+        // the path from u to v is closed if v can be found in the list
+        // of closed vertices associated with u.
+        typedef typename ClosedMatrix::const_reference Row;
+        Row r = closed[get(vertex_index, g, u)];
+        if(find(r.begin(), r.end(), v) != r.end()) {
+            return true;
         }
-        std::size_t& minimum;
-        std::size_t& maximum;
-    };
-
-    inline min_max_cycle_visitor
-    find_min_max_cycle(std::size_t& min, std::size_t& max)
-    { return min_max_cycle_visitor(min, max); }
+        return false;
+    }
 
-    namespace detail
+    template <typename Graph, typename Path, typename ClosedMatrix>
+    inline bool
+    can_extend_path(const Graph& g,
+                    typename graph_traits<Graph>::edge_descriptor e,
+                    const Path& p,
+                    const ClosedMatrix& m)
     {
-        template <typename Graph, typename Path>
-        inline bool
-        is_vertex_in_path(const Graph&,
-                          typename graph_traits<Graph>::vertex_descriptor v,
-                          const Path& p)
-        {
-            return (std::find(p.begin(), p.end(), v) != p.end());
-        }
+        function_requires< IncidenceGraphConcept<Graph> >();
+        function_requires< VertexIndexGraphConcept<Graph> >();
+        typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+
+        // get the vertices in question
+        Vertex
+            u = source(e, g),
+            v = target(e, g);
+
+        // conditions for allowing a traversal along this edge are:
+        // 1. the index of v must be greater than that at which the
+        //    the path is rooted (p.front()).
+        // 2. the vertex v cannot already be in the path
+        // 3. the vertex v cannot be closed to the vertex u
+
+        bool indices = get(vertex_index, g, p.front()) < get(vertex_index, g, v);
+        bool path = !is_vertex_in_path(g, v, p);
+        bool closed = !is_path_closed(g, u, v, m);
+        return indices && path && closed;
+    }
 
-        template <typename Graph, typename ClosedMatrix>
-        inline bool
-        is_path_closed(const Graph& g,
-                       typename graph_traits<Graph>::vertex_descriptor u,
-                       typename graph_traits<Graph>::vertex_descriptor v,
-                       const ClosedMatrix& closed)
-        {
-            // the path from u to v is closed if v can be found in the list
-            // of closed vertices associated with u.
-            typedef typename ClosedMatrix::const_reference Row;
-            Row r = closed[get(vertex_index, g, u)];
-            if(find(r.begin(), r.end(), v) != r.end()) {
+    template <typename Graph, typename Path>
+    inline bool
+    can_wrap_path(const Graph& g, const Path& p)
+    {
+        function_requires< IncidenceGraphConcept<Graph> >();
+        typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+        typedef typename graph_traits<Graph>::out_edge_iterator OutIterator;
+
+        // iterate over the out-edges of the back, looking for the
+        // front of the path. also, we can't travel along the same
+        // edge that we did on the way here, but we don't quite have the
+        // stringent requirements that we do in can_extend_path().
+        Vertex
+            u = p.back(),
+            v = p.front();
+        OutIterator i, end;
+        for(tie(i, end) = out_edges(u, g); i != end; ++i) {
+            if((target(*i, g) == v)) {
                 return true;
             }
-            return false;
-        }
-
-        template <typename Graph, typename Path, typename ClosedMatrix>
-        inline bool
-        can_extend_path(const Graph& g,
-                        typename graph_traits<Graph>::edge_descriptor e,
-                        const Path& p,
-                        const ClosedMatrix& m)
-        {
-            function_requires< IncidenceGraphConcept<Graph> >();
-            function_requires< VertexIndexGraphConcept<Graph> >();
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-
-            // get the vertices in question
-            Vertex
-                u = source(e, g),
-                v = target(e, g);
-
-            // conditions for allowing a traversal along this edge are:
-            // 1. the index of v must be greater than that at which the
-            //    the path is rooted (p.front()).
-            // 2. the vertex v cannot already be in the path
-            // 3. the vertex v cannot be closed to the vertex u
-
-            bool indices = get(vertex_index, g, p.front()) < get(vertex_index, g, v);
-            bool path = !is_vertex_in_path(g, v, p);
-            bool closed = !is_path_closed(g, u, v, m);
-            return indices && path && closed;
-        }
-
-        template <typename Graph, typename Path>
-        inline bool
-        can_wrap_path(const Graph& g, const Path& p)
-        {
-            function_requires< IncidenceGraphConcept<Graph> >();
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-            typedef typename graph_traits<Graph>::out_edge_iterator OutIterator;
-
-            // iterate over the out-edges of the back, looking for the
-            // front of the path. also, we can't travel along the same
-            // edge that we did on the way here, but we don't quite have the
-            // stringent requirements that we do in can_extend_path().
-            Vertex
-                u = p.back(),
-                v = p.front();
-            OutIterator i, end;
-            for(tie(i, end) = out_edges(u, g); i != end; ++i) {
-                if((target(*i, g) == v)) {
-                    return true;
-                }
-            }
-            return false;
         }
+        return false;
+    }
 
-        template <typename Graph,
-            typename Path,
-            typename ClosedMatrix>
-        inline typename graph_traits<Graph>::vertex_descriptor
-        extend_path(const Graph& g,
-                    Path& p,
-                    ClosedMatrix& closed)
-        {
-            function_requires< IncidenceGraphConcept<Graph> >();
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-            typedef typename graph_traits<Graph>::edge_descriptor Edge;
-            typedef typename graph_traits<Graph>::out_edge_iterator OutIterator;
-
-            // get the current vertex
-            Vertex u = p.back();
-            Vertex ret = graph_traits<Graph>::null_vertex();
-
-            // AdjacencyIterator i, end;
-            OutIterator i, end;
-            for(tie(i, end) = out_edges(u, g); i != end; ++i) {
-                Vertex v = target(*i, g);
-
-                // if we can actually extend along this edge,
-                // then that's what we want to do
-                if(can_extend_path(g, *i, p, closed)) {
-                    p.push_back(v);         // add the vertex to the path
-                    ret = v;
-                    break;
-                }
+    template <typename Graph,
+        typename Path,
+        typename ClosedMatrix>
+    inline typename graph_traits<Graph>::vertex_descriptor
+    extend_path(const Graph& g,
+                Path& p,
+                ClosedMatrix& closed)
+    {
+        function_requires< IncidenceGraphConcept<Graph> >();
+        typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+        typedef typename graph_traits<Graph>::edge_descriptor Edge;
+        typedef typename graph_traits<Graph>::out_edge_iterator OutIterator;
+
+        // get the current vertex
+        Vertex u = p.back();
+        Vertex ret = graph_traits<Graph>::null_vertex();
+
+        // AdjacencyIterator i, end;
+        OutIterator i, end;
+        for(tie(i, end) = out_edges(u, g); i != end; ++i) {
+            Vertex v = target(*i, g);
+
+            // if we can actually extend along this edge,
+            // then that's what we want to do
+            if(can_extend_path(g, *i, p, closed)) {
+                p.push_back(v);         // add the vertex to the path
+                ret = v;
+                break;
             }
-            return ret;
         }
+        return ret;
+    }
 
-        template <typename Graph, typename Path, typename ClosedMatrix>
-        inline bool
-        exhaust_paths(const Graph& g, Path& p, ClosedMatrix& closed)
-        {
-            function_requires< GraphConcept<Graph> >();
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+    template <typename Graph, typename Path, typename ClosedMatrix>
+    inline bool
+    exhaust_paths(const Graph& g, Path& p, ClosedMatrix& closed)
+    {
+        function_requires< GraphConcept<Graph> >();
+        typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
 
-            // if there's more than one vertex in the path, this closes
-            // of some possible routes and returns true. otherwise, if there's
-            // only one vertex left, the vertex has been used up
-            if(p.size() > 1) {
-                // get the last and second to last vertices, popping the last
-                // vertex off the path
-                Vertex last, prev;
-                last = p.back();
-                p.pop_back();
-                prev = p.back();
-
-                // reset the closure for the last vertex of the path and
-                // indicate that the last vertex in p is now closed to
-                // the next-to-last vertex in p
-                closed[get(vertex_index, g, last)].clear();
-                closed[get(vertex_index, g, prev)].push_back(last);
-                return true;
-            }
-            else {
-                return false;
-            }
+        // if there's more than one vertex in the path, this closes
+        // of some possible routes and returns true. otherwise, if there's
+        // only one vertex left, the vertex has been used up
+        if(p.size() > 1) {
+            // get the last and second to last vertices, popping the last
+            // vertex off the path
+            Vertex last, prev;
+            last = p.back();
+            p.pop_back();
+            prev = p.back();
+
+            // reset the closure for the last vertex of the path and
+            // indicate that the last vertex in p is now closed to
+            // the next-to-last vertex in p
+            closed[get(vertex_index, g, last)].clear();
+            closed[get(vertex_index, g, prev)].push_back(last);
+            return true;
         }
-
-        template <typename Graph, typename Visitor>
-        inline void
-        all_cycles_from_vertex(const Graph& g,
-                               typename graph_traits<Graph>::vertex_descriptor v,
-                               Visitor vis,
-                               std::size_t minlen,
-                               std::size_t maxlen)
-        {
-            function_requires< VertexListGraphConcept<Graph> >();
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-            typedef std::vector<Vertex> Path;
-            function_requires< CycleVisitorConcept<Visitor,Path,Graph> >();
-            typedef std::vector<Vertex> VertexList;
-            typedef std::vector<VertexList> ClosedMatrix;
-
-            Path p;
-            ClosedMatrix closed(num_vertices(g), VertexList());
-            Vertex null = graph_traits<Graph>::null_vertex();
-
-            // each path investigation starts at the ith vertex
-            p.push_back(v);
-
-            while(1) {
-                // extend the path until we've reached the end or the
-                // maxlen-sized cycle
-                Vertex j = null;
-                while(((j = detail::extend_path(g, p, closed)) != null)
-                        && (p.size() < maxlen))
-                    ; // empty loop
-
-                // if we're done extending the path and there's an edge
-                // connecting the back to the front, then we should have
-                // a cycle.
-                if(detail::can_wrap_path(g, p) && p.size() >= minlen) {
-                    vis.cycle(p, g);
-                }
-
-                if(!detail::exhaust_paths(g, p, closed)) {
-                    break;
-                }
-            }
+        else {
+            return false;
         }
-
-
-        template <typename D> struct min_cycles { enum { value = 2 }; };
-        template <> struct min_cycles<undirected_tag> { enum { value = 3 }; };
     }
 
     template <typename Graph, typename Visitor>
     inline void
-    tiernan_all_cycles(const Graph& g,
-                       Visitor vis,
-                       std::size_t minlen,
-                       std::size_t maxlen)
+    all_cycles_from_vertex(const Graph& g,
+                            typename graph_traits<Graph>::vertex_descriptor v,
+                            Visitor vis,
+                            std::size_t minlen,
+                            std::size_t maxlen)
     {
         function_requires< VertexListGraphConcept<Graph> >();
-        typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
+        typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
+        typedef std::vector<Vertex> Path;
+        function_requires< CycleVisitorConcept<Visitor,Path,Graph> >();
+        typedef std::vector<Vertex> VertexList;
+        typedef std::vector<VertexList> ClosedMatrix;
+
+        Path p;
+        ClosedMatrix closed(num_vertices(g), VertexList());
+        Vertex null = graph_traits<Graph>::null_vertex();
+
+        // each path investigation starts at the ith vertex
+        p.push_back(v);
+
+        while(1) {
+            // extend the path until we've reached the end or the
+            // maxlen-sized cycle
+            Vertex j = null;
+            while(((j = detail::extend_path(g, p, closed)) != null)
+                    && (p.size() < maxlen))
+                ; // empty loop
+
+            // if we're done extending the path and there's an edge
+            // connecting the back to the front, then we should have
+            // a cycle.
+            if(detail::can_wrap_path(g, p) && p.size() >= minlen) {
+                vis.cycle(p, g);
+            }
 
-        VertexIterator i, end;
-        for(tie(i, end) = vertices(g); i != end; ++i) {
-            detail::all_cycles_from_vertex(g, *i, vis, minlen, maxlen);
+            if(!detail::exhaust_paths(g, p, closed)) {
+                break;
+            }
         }
     }
 
-    template <typename Graph, typename Visitor>
-    inline void
-    tiernan_all_cycles(const Graph& g, Visitor vis, std::size_t maxlen)
-    {
-        typedef typename graph_traits<Graph>::directed_category Dir;
-        tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value, maxlen);
-    }
+    // Select the minimum allowable length of a cycle based on the directedness
+    // of the graph - 2 for directed, 3 for undirected.
+    template <typename D> struct min_cycles { enum { value = 2 }; };
+    template <> struct min_cycles<undirected_tag> { enum { value = 3 }; };
+} /* namespace detail */
+
+template <typename Graph, typename Visitor>
+inline void
+tiernan_all_cycles(const Graph& g,
+                    Visitor vis,
+                    std::size_t minlen,
+                    std::size_t maxlen)
+{
+    function_requires< VertexListGraphConcept<Graph> >();
+    typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
 
-    template <typename Graph, typename Visitor>
-    inline void
-    tiernan_all_cycles(const Graph& g, Visitor vis)
-    {
-        typedef typename graph_traits<Graph>::directed_category Dir;
-        tiernan_all_cycles(g, vis,
-                           detail::min_cycles<Dir>::value,
-                           std::numeric_limits<std::size_t>::max());
+    VertexIterator i, end;
+    for(tie(i, end) = vertices(g); i != end; ++i) {
+        detail::all_cycles_from_vertex(g, *i, vis, minlen, maxlen);
     }
+}
 
-    template <typename Graph>
-    inline std::pair<std::size_t, std::size_t>
-    tiernan_girth_and_circumference(const Graph& g)
-    {
-        std::size_t
-            min = std::numeric_limits<std::size_t>::max(),
-            max = 0;
-        tiernan_all_cycles(g, find_min_max_cycle(min, max));
+template <typename Graph, typename Visitor>
+inline void
+tiernan_all_cycles(const Graph& g, Visitor vis, std::size_t maxlen)
+{
+    typedef typename graph_traits<Graph>::directed_category Dir;
+    tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value, maxlen);
+}
 
-        // if this is the case, the graph is acyclic...
-        if(max == 0) max = min;
+template <typename Graph, typename Visitor>
+inline void
+tiernan_all_cycles(const Graph& g, Visitor vis)
+{
+    typedef typename graph_traits<Graph>::directed_category Dir;
+    tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value,
+                       std::numeric_limits<std::size_t>::max());
+}
 
-        return std::make_pair(min, max);
-    }
+template <typename Graph>
+inline std::pair<std::size_t, std::size_t>
+tiernan_girth_and_circumference(const Graph& g)
+{
+    std::size_t
+        min = std::numeric_limits<std::size_t>::max(),
+        max = 0;
+    tiernan_all_cycles(g, find_min_max_cycle(min, max));
 
-    template <typename Graph>
-    inline std::size_t
-    tiernan_girth(const Graph& g)
-    {
-        return tiernan_girth_and_circumference(g).first;
-    }
+    // if this is the case, the graph is acyclic...
+    if(max == 0) max = min;
 
-    template <typename Graph>
-    inline std::size_t
-    tiernan_circumference(const Graph& g)
-    {
-        return tiernan_girth_and_circumference(g).second;
-    }
+    return std::make_pair(min, max);
 }
 
+template <typename Graph>
+inline std::size_t
+tiernan_girth(const Graph& g)
+{ return tiernan_girth_and_circumference(g).first; }
+
+template <typename Graph>
+inline std::size_t
+tiernan_circumference(const Graph& g)
+{ return tiernan_girth_and_circumference(g).second; }
+
+} /* namespace boost */
+
 #endif
Modified: trunk/boost/graph/undirected_graph.hpp
==============================================================================
--- trunk/boost/graph/undirected_graph.hpp	(original)
+++ trunk/boost/graph/undirected_graph.hpp	2009-02-08 09:51:58 EST (Sun, 08 Feb 2009)
@@ -13,11 +13,23 @@
 
 namespace boost
 {
-    struct undirected_graph_tag { };
+struct undirected_graph_tag { };
 
-    template <typename VertexProperty = no_property,
-            typename EdgeProperty = no_property,
-            typename GraphProperty = no_property>
+/**
+ * The undirected_graph class template is a simplified version of the BGL
+ * adjacency list. This class is provided for ease of use, but may not
+ * perform as well as custom-defined adjacency list classes. Instances of
+ * this template model the VertexIndexGraph, and EdgeIndexGraph concepts. The
+ * graph is also fully mutable, supporting both insertions and removals of
+ * vertices and edges.
+ *
+ * @note Special care must be taken when removing vertices or edges since
+ * those operations can invalidate the numbering of vertices.
+ */
+template <
+    typename VertexProperty = no_property,
+    typename EdgeProperty = no_property,
+    typename GraphProperty = no_property>
 class undirected_graph
 {
     typedef property<vertex_index_t, unsigned, VertexProperty> vertex_property;