$include_dir="/home/hyper-archives/boost-commit/include"; include("$include_dir/msg-header.inc") ?>
From: asutton_at_[hidden]
Date: 2007-08-01 13:46:49
Author: asutton
Date: 2007-08-01 13:46:48 EDT (Wed, 01 Aug 2007)
New Revision: 38341
URL: http://svn.boost.org/trac/boost/changeset/38341
Log:
Renamed files
Added:
   sandbox/SOC/2007/graphs/boost/graph/bron_kerbosch_all_cliques.hpp
      - copied unchanged from r38340, /sandbox/SOC/2007/graphs/boost/graph/clique.hpp
   sandbox/SOC/2007/graphs/boost/graph/tiernan_all_cycles.hpp
      - copied unchanged from r38340, /sandbox/SOC/2007/graphs/boost/graph/cycle.hpp
Removed:
   sandbox/SOC/2007/graphs/boost/graph/clique.hpp
   sandbox/SOC/2007/graphs/boost/graph/cycle.hpp
Deleted: sandbox/SOC/2007/graphs/boost/graph/clique.hpp
==============================================================================
--- sandbox/SOC/2007/graphs/boost/graph/clique.hpp	2007-08-01 13:46:48 EDT (Wed, 01 Aug 2007)
+++ (empty file)
@@ -1,226 +0,0 @@
-// (C) Copyright Andrew Sutton 2007
-//
-// Use, modification and distribution are subject to the
-// Boost Software License, Version 1.0 (See accompanying file
-// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
-
-#ifndef BOOST_GRAPH_CLIQUE_HXX
-#define BOOST_GRAPH_CLIQUE_HXX
-
-namespace boost
-{
-
-    // The algorithm implemented in this paper is based on the so-called
-    // Algorithm 457, published as:
-    //
-    //     @article{362367,
-    //         author = {Coen Bron and Joep Kerbosch},
-    //         title = {Algorithm 457: finding all cliques of an undirected graph},
-    //         journal = {Communications of the ACM},
-    //         volume = {16},
-    //         number = {9},
-    //         year = {1973},
-    //         issn = {0001-0782},
-    //         pages = {575--577},
-    //         doi = {http://doi.acm.org/10.1145/362342.362367},
-    //             publisher = {ACM Press},
-    //             address = {New York, NY, USA},
-    //         }
-    //
-    // Sort of. This implementation is adapted from the 1st version of the
-    // algorithm and does not implement the candidate selection optimization
-    // described as published - it could, it just doesn't yet.
-    //
-    // The algorithm is given as proportional to (3.14)^(n/3) power. This is
-    // not the same as O(...), but based on time measures and approximation.
-    //
-    // Unfortunately, this implementation may be less efficient on non-
-    // AdjacencyMatrix modeled graphs due to the non-constant implementation
-    // of the edge(u,v,g) functions.
-    //
-    // TODO: It might be worthwhile to provide functionality for passing
-    // a connectivity matrix to improve the efficiency of those lookups
-    // when needed. This could simply be passed as a BooleanMatrix
-    // s.t. edge(u,v,B) returns true or false. This could easily be
-    // abstracted for adjacency matricies.
-    //
-    // The following paper is interesting for a number of reasons. First,
-    // it lists a number of other such algorithms and second, it describes
-    // a new algorithm (that does not appear to require the edge(u,v,g)
-    // function and appears fairly efficient. It is probably worth investigating.
-    //
-    //      @article{DBLP:journals/tcs/TomitaTT06,
-    //          author = {Etsuji Tomita and Akira Tanaka and Haruhisa Takahashi},
-    //          title = {The worst-case time complexity for generating all maximal cliques and computational experiments},
-    //          journal = {Theor. Comput. Sci.},
-    //          volume = {363},
-    //          number = {1},
-    //          year = {2006},
-    //          pages = {28-42}
-    //          ee = {http://dx.doi.org/10.1016/j.tcs.2006.06.015}
-    //  }
-
-    struct clique_visitor
-    {
-        template <typename VertexSet, typename Graph>
-        void clique(const VertexSet&, Graph&)
-        { }
-    };
-
-    namespace detail
-    {
-        template <typename Graph>
-        inline bool
-        is_connected_to_clique(const Graph& g,
-                               typename graph_traits<Graph>::vertex_descriptor u,
-                               typename graph_traits<Graph>::vertex_descriptor v,
-                               typename graph_traits<Graph>::undirected_category)
-        {
-            return edge(u, v, g).second;
-        }
-
-        template <typename Graph>
-        inline bool
-        is_connected_to_clique(const Graph& g,
-                               typename graph_traits<Graph>::vertex_descriptor u,
-                               typename graph_traits<Graph>::vertex_descriptor v,
-                               typename graph_traits<Graph>::directed_category)
-        {
-            // Note that this could alternate between using an or to determine
-            // full connectivity. I believe that this should produce strongly
-            // connected components. Note that using && instead of || will
-            // change the results to a fully connected subgraph (i.e., symmetric
-            // edges between all vertices s.t., if a->b, then b->a.
-            //
-            // TODO: use this, the other, or allow switching based on a user-
-            // define strategy.
-            return edge(u, v, g).second && edge(v, u, g).second;
-        }
-
-        template <typename Graph, typename Container>
-        inline void
-        filter_unconnected_vertices(const Graph& g,
-                                    typename graph_traits<Graph>::vertex_descriptor v,
-                                    const Container& in,
-                                    Container& out)
-        {
-            typename graph_traits<Graph>::directed_category cat;
-            typename Container::const_iterator i, end = in.end();
-            for(i = in.begin(); i != end; ++i) {
-                if(is_connected_to_clique(g, v, *i, cat)) {
-                    out.push_back(*i);
-                }
-            }
-        }
-
-        template <
-                typename Graph,
-                typename Clique,        // compsub type
-                typename Container,     // candidates/not type
-                typename Visitor
-        >
-        void extend_clique(const Graph& g,
-                           Clique& clique,
-                           Container& cands,
-                           Container& nots,
-                           Visitor vis)
-        {
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-
-            {
-                // is there vertex in nots that is connected to all vertices
-                // in the candidate set? if so, no clique can ever be found.
-                typename Container::iterator ni, nend = nots.end();
-                typename Container::iterator ci, cend = cands.end();
-                for(ni = nots.begin(); ni != nend; ++ni) {
-                    for(ci = cands.begin(); ci != cend; ++ci) {
-                        // if we don't find an edge, then we're okay.
-                        if(!edge(*ni, *ci, g).second) break;
-                    }
-                    // if we iterated all the way to the end, then *ni
-                    // is connected to all *ci
-                    if(ci == cend) break;
-                }
-                // if we broke early, we found *ni connected to all *ci
-                if(ni != nend) return;
-            }
-
-            // TODO: the original algorithm 457 describes an alternative
-            // (albeit really complicated) mechanism for selecting candidates.
-            // The given optimizaiton seeks to bring about the above
-            // condition sooner (i.e., there is a vertex in the not set
-            // that is connected to all candidates). unfortunately, the
-            // method they give for doing this is fairly unclear.
-
-            // basically, for every vertex in not, we should know how many
-            // vertices it is disconnected from in the candidate set. if
-            // we fix some vertex in the not set, then we want to keep
-            // choosing vertices that are not connected to that fixed vertex.
-            // apparently, by selecting fix point with the minimum number
-            // of disconnections (i.e., the maximum number of connections
-            // within the candidate set), then the previous condition wil
-            // be reached sooner.
-
-            // there's some other stuff about using the number of disconnects
-            // as a counter, but i'm jot really sure i followed it.
-
-            // otherwise, iterate over candidates and and test
-            // for maxmim cliquiness.
-            typename Container::iterator i, j, end = cands.end();
-            for(i = cands.begin(); i != cands.end(); ) {
-                Vertex candidate = *i;
-
-                // add the candidate to the clique (keeping the iterator!)
-                typename Clique::iterator ci =
-                        clique.insert(clique.end(), candidate);
-
-                // remove it from the candidate set
-                i = cands.erase(i);
-
-                // build new candidate and not sets by removing all vertices
-                // that are not connected to the current candidate vertex.
-                // these actually invert the operation, adding them to the new
-                // sets if the vertices are connected. its semantically the same.
-                Container new_cands, new_nots;
-                filter_unconnected_vertices(g, candidate, cands, new_cands);
-                filter_unconnected_vertices(g, candidate, nots, new_nots);
-
-                if(new_cands.empty() && new_nots.empty()) {
-                    // our current clique is maximal since there's nothing
-                    // that's connected that we haven't already visited
-                    vis.clique(clique, g);
-                }
-                else {
-                    // recurse to explore the new candidates
-                    extend_clique(g, clique, new_cands, new_nots, vis);
-                }
-
-                // we're done with this vertex, so we need to move it
-                // to the nots, and remove the candidate from the clique.
-                nots.push_back(candidate);
-                clique.erase(ci);
-            }
-        }
-    }
-
-
-    template <typename Graph, typename Visitor>
-    inline void
-    bron_kerbosch_all_cliques(const Graph& g, Visitor vis)
-    {
-        typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-        typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
-        typedef std::vector<Vertex> VertexSet;
-        typedef std::list<Vertex> Clique;
-
-        VertexIterator i, end;
-        tie(i, end) = vertices(g);
-
-        VertexSet cands(i, end);    // start with all vertices as candidates
-        VertexSet nots;             // start with no vertices visited
-        Clique clique;              // the first clique is an empty vertex set
-        detail::extend_clique(g, clique, cands, nots, vis);
-    }
-}
-
-#endif
Deleted: sandbox/SOC/2007/graphs/boost/graph/cycle.hpp
==============================================================================
--- sandbox/SOC/2007/graphs/boost/graph/cycle.hpp	2007-08-01 13:46:48 EDT (Wed, 01 Aug 2007)
+++ (empty file)
@@ -1,317 +0,0 @@
-// (C) Copyright Andrew Sutton 2007
-//
-// Use, modification and distribution are subject to the
-// Boost Software License, Version 1.0 (See accompanying file
-// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
-
-#ifndef BOOST_GRAPH_CYCLE_HXX
-#define BOOST_GRAPH_CYCLE_HXX
-
-#include <vector>
-#include <limits>
-
-#include <boost/utility.hpp>
-#include <boost/graph/graph_traits.hpp>
-
-namespace boost
-{
-
-    // The implementation of this algorithm is a reproduction of the Teirnan
-    // approach for directed graphs: bibtex follows
-    //
-    //     @article{362819,
-    //         author = {James C. Tiernan},
-    //         title = {An efficient search algorithm to find the elementary circuits of a graph},
-    //         journal = {Commun. ACM},
-    //         volume = {13},
-    //         number = {12},
-    //         year = {1970},
-    //         issn = {0001-0782},
-    //         pages = {722--726},
-    //         doi = {http://doi.acm.org/10.1145/362814.362819},
-    //             publisher = {ACM Press},
-    //             address = {New York, NY, USA},
-    //         }
-    //
-    // It should be pointed out that the author does not provide a complete analysis for
-    // either time or space. This is in part, due to the fact that it's a fairly input
-    // sensitive problem related to the density and construction of the graph, not just
-    // its size.
-    //
-    // I've also taken some liberties with the interpretation of the algorithm - I've
-    // basically modernized it to use real data structures (no more arrays and matrices).
-    // Oh... and there's explicit control structures - not just gotos.
-    //
-    // The problem is definitely NP-complete, an an unbounded implementation of this
-    // will probably run for quite a while (i.e.) on a large graph. The conclusions
-    // of this paper alkso reference a Paton algorithm for undirected graphs as being
-    // much more efficient (apparently based on spanning trees). Although not implemented,
-    // it can be found here:
-    //
-    //     @article{363232,
-    //         author = {Keith Paton},
-    //         title = {An algorithm for finding a fundamental set of cycles of a graph},
-    //         journal = {Commun. ACM},
-    //         volume = {12},
-    //         number = {9},
-    //         year = {1969},
-    //         issn = {0001-0782},
-    //         pages = {514--518},
-    //         doi = {http://doi.acm.org/10.1145/363219.363232},
-    //             publisher = {ACM Press},
-    //             address = {New York, NY, USA},
-    //         }
-
-    struct cycle_visitor
-    {
-        template <class Vertex, class Graph>
-        inline void start_vertex(Vertex v, Graph& g)
-        { }
-
-        template <class Vertex, class Graph>
-        inline void finish_vertex(Vertex v, Graph& g)
-        { }
-
-        template <class Path, class Graph>
-        inline void cycle(const Path& p, Graph& g)
-        { }
-    };
-
-    namespace detail
-    {
-        template <typename Graph, typename Path>
-        inline bool
-        is_in_path(const Graph&,
-                   typename graph_traits<Graph>::vertex_descriptor v,
-                   const Path& p)
-        {
-            return (std::find(p.begin(), p.end(), v) != p.end());
-        }
-
-        template <typename Graph, typename ClosedMatrix>
-        inline bool
-        is_path_closed(const Graph& g,
-                       typename graph_traits<Graph>::vertex_descriptor u,
-                       typename graph_traits<Graph>::vertex_descriptor v,
-                       const ClosedMatrix& closed)
-        {
-            // the path from u to v is closed if v can be found in the list
-            // of closed vertices associated with u.
-            typedef typename ClosedMatrix::const_reference Row;
-            Row r = closed[get(vertex_index, g, u)];
-            if(find(r.begin(), r.end(), v) != r.end()) {
-                return true;
-            }
-            return false;
-        }
-
-        template <typename Graph, typename Path, typename ClosedMatrix>
-        inline bool
-        ignore_vertex(const Graph& g,
-                      typename graph_traits<Graph>::vertex_descriptor u,
-                      typename graph_traits<Graph>::vertex_descriptor v,
-                      const Path& p,
-                      const ClosedMatrix& m)
-        {
-            // notice the vth index must be greater than the first index of
-            // path in order for it to be considered.
-
-            return get(vertex_index, g, p.front()) > get(vertex_index, g, v) ||
-                   is_in_path(g, v, p) ||
-                   is_path_closed(g, u, v, m);
-        }
-
-        template <
-            typename Graph,
-            typename Path,
-            typename ClosedMatrix>
-        inline bool
-        can_extend_path(const Graph& g,
-                        typename graph_traits<Graph>::edge_descriptor e,
-                        const Path& p,
-                        const ClosedMatrix& m)
-        {
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-
-            // get the vertices in question
-            Vertex
-                u = source(e, g),
-                v = target(e, g);
-
-            // conditions for allowing a traversal along this edge are:
-            // 1. the index of v must be greater than that at which the
-            //    the path is rooted (p.front()).
-            // 2. the vertex v cannot already be in the path
-            // 3. the vertex v cannot be closed to the vertex u
-
-            bool indices = get(vertex_index, g, p.front()) < get(vertex_index, g, v);
-            bool path = !is_in_path(g, v, p);
-            bool closed = !is_path_closed(g, u, v, m);
-            return indices && path && closed;
-        }
-
-        template <
-            typename Graph,
-            typename Path>
-        inline bool
-        can_wrap_path(const Graph& g,
-                      const Path& p)
-        {
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-            typedef typename graph_traits<Graph>::out_edge_iterator OutIterator;
-
-            // iterate over the out-edges of the back, looking for the
-            // front of the path. also, we can't travel along the same
-            // edge that we did on the way here.
-            Vertex
-                u = p.back(),
-                v = p.front();
-            OutIterator i, end;
-            for(tie(i, end) = out_edges(u, g); i != end; ++i) {
-                if((target(*i, g) == v)) {
-                    return true;
-                }
-            }
-            return false;
-        }
-
-        template <
-            typename Graph,
-            typename Path,
-            typename ClosedMatrix>
-        inline typename graph_traits<Graph>::vertex_descriptor
-        extend_path(const Graph& g,
-                    Path& p,
-                    ClosedMatrix& closed)
-        {
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-            typedef typename graph_traits<Graph>::edge_descriptor Edge;
-            typedef typename graph_traits<Graph>::out_edge_iterator OutIterator;
-
-            // get the current vertex
-            Vertex u = p.back();
-            Vertex ret = graph_traits<Graph>::null_vertex();
-
-            // AdjacencyIterator i, end;
-            OutIterator i, end;
-            for(tie(i, end) = out_edges(u, g); i != end; ++i) {
-                Vertex v = target(*i, g);
-
-                // if we can actually extend along this edge,
-                // then that's what we want to do
-                if(can_extend_path(g, *i, p, closed)) {
-                    p.push_back(v);         // add the vertex to the path
-                    ret = v;
-                    break;
-                }
-            }
-            return ret;
-        }
-
-        template <typename Graph,
-                  typename Path,
-                  typename ClosedMatrix>
-        inline bool
-        exhaust_paths(const Graph& g,
-                      Path& p,
-                      ClosedMatrix& closed)
-        {
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-
-            // if there's more than one vertex in the path, this closes
-            // of some possible routes and returns true. otherwise, if there's
-            // only one vertex left, the vertex has been used up
-            if(p.size() > 1) {
-                // get the last and second to last vertices, popping the last
-                // vertex off the path
-                Vertex last, prev;
-                last = p.back();
-                p.pop_back();
-                prev = p.back();
-
-                // reset the closure for the last vertex of the path and
-                // indicate that the last vertex in p is now closed to
-                // the next-to-last vertex in p
-                closed[get(vertex_index, g, last)].clear();
-                closed[get(vertex_index, g, prev)].push_back(last);
-                return true;
-            }
-            else {
-                return false;
-            }
-        }
-
-        template <typename Graph, typename Visitor>
-        inline void
-        all_cycles_at_vertex(const Graph& g,
-                             typename graph_traits<Graph>::vertex_descriptor v,
-                             Visitor vis,
-                             std::size_t maxlen,
-                             std::size_t minlen)
-        {
-            typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
-            typedef typename graph_traits<Graph>::edge_descriptor Edge;
-
-            typedef std::vector<Vertex> Path;
-            typedef std::vector<Vertex> VertexList;
-            typedef std::vector<VertexList> ClosedMatrix;
-
-            // this is an added type that helps us determine traversability
-            // for paths in undirected graphs. Specifically, when we consider
-            // traversability, we have to ensure that the move to the next
-            // vertex does not walk down the same path as this vertex.
-
-            const Vertex null = graph_traits<Graph>::null_vertex();
-
-            // The path is the sequence of vertices
-            Path p;
-            ClosedMatrix closed(num_vertices(g), VertexList());
-
-            // each path investigation starts at the ith vertex
-            p.push_back(v);
-
-            while(1) {
-                // extend the path until we've reached the end or the
-                // maxlen-sized cycle
-                Vertex j = null;
-                while(((j = detail::extend_path(g, p, closed)) != null)
-                      && (p.size() < maxlen))
-                    ; // empty loop
-
-                // if we're done extending the path and there's an edge
-                // connecting the back to the front, then we should have
-                // a cycle.
-                if(can_wrap_path(g, p) && p.size() > minlen) {
-                    vis.cycle(p, g);
-                }
-
-                if(!detail::exhaust_paths(g, p, closed)) {
-                    break;
-                }
-            }
-        }
-    }
-
-    template <typename Graph, typename Visitor>
-    inline void
-    tiernan_all_cycles(const Graph& g, Visitor vis,
-                       std::size_t maxlen,
-                       std::size_t minlen)
-    {
-        typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
-
-        VertexIterator i, end;
-        for(tie(i, end) = vertices(g); i != end; ++i) {
-            detail::all_cycles_at_vertex(g, *i, vis, maxlen, minlen);
-        }
-    }
-
-    template <typename Graph, typename Visitor>
-    inline void
-    tiernan_all_cycles(const Graph& g, Visitor vis)
-    {
-        tiernan_all_cycles(g, vis, 2, std::numeric_limits<std::size_t>::max());
-    }
-}
-
-#endif